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LETTER TO THE EDITOR 

n-dimensional equations with the maximum number of 
symmetry generators 

L G S Duarte, S E S Duarte and I C Moreira 
Instituto de Fisica, Universidade Federal d o  Rio de Janeiro, 21944-Ilha do Fundlo, Cidade 
Universithria Rio de Janeiro, Brazil 

Received 24 October 1988 

Abstract. In this letter we obtain the general class of ordinary differential equations that 
can be reduced by a point transformation to the free-particle equation and give the general 
form of the Lie symmetry generators for these equations. We apply these results to obtain 
the symmetry generators for the n-dimensional harmonic oscillator and for a particle in a 
constant magnetic field. 

The utilisation of a coordinate transformation to reduce one differential equation to 
another differential equation with a known solution is an old procedure, dating from 
the very beginning of the development of the differential calculus. In this context the 
problem of the linearisation of a differential equation has paramount importance. In 
general, linearisation amounts to finding necessary and sufficient conditions for the 
equation to be locally equivalent to the free-particle equation. In recent years this 
procedure has been employed by several authors in the analysis of the symmetry 
structures of second-order differential equations and, in quantum mechanics, for 
obtaining of propagators starting from the free-particle propagator (see, for example, 
Junker and Inomata 1985). 

In a recent letter we obtained the general class of one-dimensional equations that 
can be reduced to the free-particle equation by an invertible point transformation 
(Duarte et a1 1987). We also found the general form of their Lie symmetry generators, 
which have a Lie algebra isomorphic to the free-particle symmetry group, SL(3, R ) .  
The same problem, in the one-dimensional case, has been investigated independently 
by Sarlet et aZ(1987) (see also Leach and Mahomed 1985). GonzBlez-Lbpez (1988a, b) 
analysed those n-dimensional linear systems which have the maximal group of Lie 
symmetries, SL( n + 2, R )  and are reduced to the n-dimensional free-particle equation. 
It is also worth observing that Cartan considered this problem, as long ago as 1924 
(reprinted in Cartan 1984), from a geometrical point of view. Here we extend, for 
n-dimensional systems, the results of our previous letter. We obtain the general class 
of ordinary differential equations which can be reduced by a point transformation to 
the free-particle equations and give the general form of the Lie symmetry generators 
for this system. The same point transformation can be used to find a Lagrangian for 
this class of equations, starting from the free-particle Lagrangian. We also consider 
the application of these results to the identification of the symmetry generators for the 
n-dimensional harmonic oscillator and to the case of a particle in a constant magnetic 
field. 
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If we start from the n-dimensional free-particle equations 

d2X'/dT2 = 0 (1) 

and make an invertible point transformation 

X i  = F'(XJ, t )  

T = G(x', t )  

we get the following class of equations: 

x i  = P'(X', T )  

t = Q(Xj ,  T )  

ALzk+A( $ i k i l + r (  y ' j l k +  vi$'++i=o 
Jkl i k  J (3) 

where 

AL=(FfkG/I-  GlkFfl)XI+ G/,Ffk-Ff,G/k 

r j k  = 2G/jFj,k G/,Ffjk - 2 FfjG/,k - Ff,G/jk (4) 

Vj = 2G/ ,FfO + G/,Ff ,l - 2 F f , GI ,j - F f ,  GI,, 

L ' = G  F' -F '  G 
/ I  / I 1  / l  / 1 1  

with i, j ,  k, 1 = 1,. . . , n and Ffk  = aF'/aXk. The condition which must be satisfied if 
the transformations ( 2 )  are to be invertible is 

det 1;; . . .  F f  n 

F)'n 

The free-particle equations (1) have the following symmetry generators, obtained 
by using the usual Lie conditions (Wulfman and Wybourne 1976): 

U, =a/aT U, = Td/a T U:  = X'a/aT 

U'  - 4 - a/ax' U, = T2a/aT+ TXia /aXi  U: = Td/aX'  ( 6 )  
u~ - x'a/axj U:=X'Td/aT+X'X'a/dX'  8 -  

where 1 s i, j s n. The symmetry algebra of these generators is the SL ( n  + 2,  R )  algebra 
whose dimension is n 2 +  4n + 3. 

From ( 2 )  and (6) we get the general form for the symmetry generators of the 
equations (3): 

U1 = Q/T(x ' ,  t ) d / d t +  PfT(X, t)d/dx' U,= GQ/Ta/dt GPfTd/dX' 

U: = FiQ/Ta/af + F'Pj/Td/dXJ U: = QIia/at + Pi,,a/ad. 

U S  = GQ/,a/at + GPi,,a/ad U;, = FiQIja/at + FiP:,a/axk (7) 

U, = ( G 2 Q I T +  GF'Qli)a/at+ (G2PfT+ GFJPf,)a/ax' 

U ;  = ( GF'QIT + F'FJQ,,)a/at + ( GFiP:T + FiFJPFj)a/axk 

where 1 s i, j ,  k s  n. The symmetry algebra of all the systems with the form (3) is 
isomorphic to SL(n +2,  R ) ,  with the maximal dimension being n2+4n + 3 .  
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Equations (3) can be obtained from a Lagrangian which is constructed by starting 

(8) 
and applying the point transformation (2). The general form of this Lagrangian will be 

from the usual free Lagrangian 
2o = +x i x  i 

(9) 

If we start from other equivalent Lagrangians for the free-particle equation we also 
get equivalent Lagrangians for (3). This is a new method for finding equivalent 
Lagrangians for the system (3). 

The Noether symmetry generators for the Lagrangian (9) follow from the symmetry 
generators for the free Lagrangian &, and constitute a symmetry algebra isomorphic 
to the symmetry algebra of 2,, . The following expressions for the +( n2 + 3n + 6 )  vector 
fields, obtained by Gonzfilez-Lbpez (1988a) in the linear case, apply also in this 
situation: 

v, = U, v, = U, + U:' vy= U, 

vi 4 -  - U;  
(10) 

We shall now analyse particular cases of (3). If we impose the point transformation 

vi 5 -  - U: v:, = U:, - U{'. 

G = A t )  (11) F' = Aik( t ) x k  

then (3) will have the form 

(i) First we consider the n-dimensional isotropic oscillator. We can easily show 
that for the choice 

Aik = sec(wt)Sik g = tan(wt)/w (13) 

xi = -JXi.  (14) 

we obtain the equations of motion of an n-dimensional isotropic oscillator: 

The transformations (13) are the generalisation to n dimensions of the Jackiw transfor- 
mations (Jackiw 1980) for the one-dimensional case. The Lie symmetry generators for 
these n-dimensional equations can be obtained directly from (13) and (7). 

(ii) Now let us examine the application to a charged particle in a constant magnetic 
field. If we consider the two-dimensional motion of a charged particle in a plane 
perpendicular to the direction of a constant magnetic field, the equations of motion 
will be 

x = 2wy y = -2wx (15) 
where o = eB/2mc. 

transformation 
Equations (15) can be obtained from the free-particle equations by using the 

g = tan(wt)/w, 
-tan (ot) 

tan (of)  1 
Aik = 
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This transformation is a combination of the Jackiw transformation and a Larmor 
rotation. From (16) and (7), we can get the Lie symmetry generators for (15): 

U, = a/at  U, = a/ax U, = a/ay U, = ya/ax - xa/ay 

U, = xa/ax + ya/ay 

U, = sin(2wt)a/ax+cos(2wt)a/ay 

U, = -(cos(2wt)/2w)a/dt + x sin(2wt)alax + x cos(2wt)a/ay 

U, = -(sin(2wt)/2w)d/at - x cos(2wt)d/dx + x sin(2wt)a/ay 

U, = cos(2wt)d/dx -sin(2wt)a/dy 

U,, = (sin(2ot)/2w)a/at + y sin(2wt)a/dx+ y cos(2wt)alay 

U,, = -(cos(2wt)/2w)a/at - y c0~(2wt)a/ax + y sin(2ot)a/ay 

u12= -(y/2w)a/at +i(x2-  y2)a/ax+xya/ay 

U,, = (x/2w)a/at+xya/dx+;(x2- y2)a/ay 

u14= [x sin(2wt)+ y cos(2wt)]a/at+o cos(2wt)(x2+ y2)a/ax 

- U  sin(2wt)(x2+y2)a/ay 

u , ~  = [-x cos(2wt)+ y sin(2wt)]a/at+ w sin(2wt)(x2+ y2)a/ax 

+ w cos(2wt)(x2+ y2)a/ay. 

2 = ; (x2+j2)  + w(xy -xy) + (d/dt)[;w(x’+ y2) tan(wt)]. 

The Lagrangian obtained from the free Lagrangian by using (16) is 

(18) 

We observe that the equations for an anisotropic oscillator, or for the full three- 
dimensional motion of a charged particle in a constant magnetic field, do not have 
the form (3). Therefore, there is no invertible transformation that reduces these 
equations to the free-particle equations. These are particular cases of the theorem of 
GonzPlez-L6pez (1988a), which can be demonstrated from (3) and (4) by imposing 
A j k l =  0, rj, = 0, vj = Vj(t) and L’ = Bik(t)xk + Ci(t). Examples of non-linear 
equations with the maximal symmetry structure can be obtained directly from (3). 

The procedure employed here to find the general class of n-dimensional equations 
with the maximal Lie symmetry structure, i.e. that can be reduced to the free equation, 
can be generalised for other classes of equations with a different symmetry group. For 
example, we can start from the equations of motion for the three-dimensional Kepler 
problem and find the class of equations that can be transformed, by (2), into these 
equations. We thus have a method for generating classes of integrable equations and 
for finding their Lie symmetry groups if we start from integrable equations with a 
known symmetry structure. It is useful to extend the same procedure to partial 
differential equations which can be transformed, for example, into the free wave 
equation. 

We would like to thank A Gonziilez-L6pez for supplying the preprint referenced below, 
and 0 M Ritter, A Tort and F C Santos for stimulating discussions. 
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